Abstract

The structural and dynamical stabilities of C${}_{60}^{+}$He${}_{N}$ clusters are theoretically investigated using global optimization and path-integral simulation methods. Up to $N=32$, the fullerene ion traps the helium atoms onto sixfold and fivefold faces, strongly enough to negate vibrational delocalization. Above this size, geometric frustration takes over and the clusters grow as a thin but homogeneous liquid layer. However, as their size reaches 60 atoms, corrugation barriers are suppressed and the cluster is again rigidlike. Additional fluid layers are predicted to arise above 72 atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.