Abstract

Abstract We examine the influence of grains size on the stability of polycrystalline coherent binary solid solutions. By assuming that the grains are isotropic, we find that the tendency for instability decreases as the radius of the grains decrease. We also find that a temperature-dependent critical grain radius exists below which the tendency for instability vanishes and the grains are stable, with respect to infinitesimal composition fluctuations, for any initial composition. We find that the critical grain radius decreases monotonically as the temperature decrease. If the radius of the grains is smaller than the minimum critical grain radius the grains are stable for any temperature and initial composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.