Abstract

Cleavage fracture in ferritic steels is controlled by several critical steps. First a microcrack must nucleate, grow and overcome barriers, such as grain boundaries. The latter is examined here by use of a periodic, axisymmetric model representing two grains. A microcrack nucleated at the center in one grain is driven by a constant remotely applied stress towards the second grain. The cleavage planes of the grain in which the microcrack is nucleated coincide with the principal loading direction. In the adjacent grain, due to misalignment in possible cleavage planes, the propagation direction changes and separation occurs in mixed mode, involving both normal and shear separations. The temperature dependence of the mechanical properties of the material is accounted for by use of a temperature dependent elasto viscoplastic material model. The largest grain size that can arrest a rapidly propagating microcrack is defined as the critical grain size. The effects of stress state and temperature on the critical grain size are examined. The influence of mismatch in lattice orientation between two adjacent grains in terms of a tilt angle is both qualitatively and quantitatively described. It is shown that the critical grain size is influenced by plastic geometry change and prestraining, which depend on the applied stress state. The results also show that a microcrack can be arrested in an adjacent grain under specific conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call