Abstract

Sponges are increasingly recognized as ecologically important on coral reefs as scleractinian corals decline. Most sponge species can be divided into two symbiotic phenotypes which are characterized as high microbial abundance (HMA) or low microbial abundance (LMA) sponges. Sponge species of HMA or LMA symbiotic phenotypes differ not just in their microbiomes, but in other characteristics, including that LMA sponges actively pump at higher rates than HMA sponges based on a standard normalization to size. This dichotomy has recently been questioned because the size range of LMA sponges used to quantify pumping rates during studies on their trophic ecology were exceedingly small, often less than an order of magnitude. Here, both HMA and LMA sponges, across two to three orders of magnitude in sponge volume (mL) or mass (g) were assessed for allometric relationships between sponge size and pumping rates (Q = mL s−1). The scaling analysis of all data sets combined reveals that HMA sponges scale their pumping rates isometrically with size, while LMA sponges scale their pumping rate allometrically. When HMA species are examined separately, however, tropical HMA sponges scaled isometrically, while temperate HMA sponges scaled allometrically. From an ecological perspective, to quantify differences between HMA and LMA sponges for rate functions of interest (e.g., feeding) it is important to remove the effects of size as a covariate, and adjust the Q values of sponges to a standard volume or mass. For multiple species and geographic locations, this analysis shows that LMA sponges always maintain higher Q values. On tropical coral reefs, the differences between HMA and LMA sponges are intrinsic and constrained by strong evolutionary selection resulting in fixed differences in Q, regardless of sponge size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call