Abstract

The levitation force between a permanent magnetic disk and a thin superconducting disk in the Meissner state is calculated using the dipole–dipole interactions model. The levitation force as a function of the magnet and superconductor radii, the levitation height, and the superconductor thickness is studied under the assumption that the radius of the magnet is much smaller than the radius of the superconductor. Results showed an increase in the levitation force as a function of the radius of the superconducting disk. However, the levitation force decreases as the radius of the permanent magnetic disk increases. Demagnetizing effects are taken into account by considering the appropriate demagnetizing factor for the suggested system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.