Abstract

This paper focuses on a computational-experimental analysis of sample geometry dominated and grain dominated size effects in miniaturized polycrystalline FCC components, where the grain size, orientation and grain boundaries play an important role. Experimental and numerical findings elucidate the joint contribution of first-order and second-order size effects for this type of components. The intrinsic competition between the weakening and strengthening contributions resulting from these effects is commented and further analysed. It is shown that a second-order crystal plasticity model is needed to account for the simultaneous contributions of both size effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.