Abstract

Polymeric lattice materials with micro/nano-structures are attractive for applications in a wide range of bioengineering systems. Resent experimental results show that elastic constitutive law of polymer materials is in line with the Cosserat elasticity. In this work, a Cosserat continuum spectral element method is employed to explore the size-dependent mechanical performance of polymer polymeric lattice with horseshoe microstructures, efficiently. The mechanical performance predicted by the proposed method agrees very well with the experiment data. Our results demonstrate that size effects are significant in polymeric lattice materials. The size-dependent negative Poisson's ratio is found in the polymeric lattice materials with the same topological structure due to the size effect caused by the Cosserat elasticity of the polymer materials. It could be implied that it is possible to continuously adjust the negative Poisson's ratio of the polymeric lattice material over a wide range by only changing its microstructural size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call