Abstract
The significant role of traffic emissions mixed from various sources in urban air pollution has been widely recognized. However, the corresponding contributions to the roadside particle distribution are poorly understood due to the mixed impacts of various sources. Particle number concentrations of different sizes at the roadside in Nankai District of Tianjin were continuously monitored using a portable aerosol particle spectrometer during the morning rush hour (07:30-09:20) from Nov. 9, 2018 to Jan. 6, 2019. Characteristic and influencing factors of particle size distributions were discussed combined with temperature and relative humidity data, while potential sources of particles at the roadside were identified based on size distribution analysis. The results showed that the average total particle number concentrations were 502 cm-3, and the concentrations of the accumulation mode and coarse mode were 500 cm-3 and 2 cm-3, respectively. The distribution of number concentrations at the roadside was unimodal and primarily concentrated at 0.25-0.50 μm, with peak sizes at 0.28-0.30 μm. The same distribution trend of particle number concentration and difference in the concentration in the same segment size were observed at different periods. Vehicle activity level was the main influencing factor of road particulate matter concentration on different weekdays; the probability of the high value of road particulate matter concentration was reduced by a reasonable combination of the vehicle tail numbers. Temperature and relative humidity were both found to be positively correlated with the number concentration of particles. With the increase in temperature and relative humidity, the total and peak particle number concentration showed an overall upward trend. In addition, the peak particle size increased from 0.28-0.30 μm to 0.35-0.40 μm when relative humidity was higher than 80%. Three sources, including road dust, brake and tire wear, and the aging particles from vehicle exhaust, were identified using positive matrix factorization in this study. Road dust contributed 8.6% of the total number concentration, which mainly consisted of particles with sizes above 5.00 μm. Brake and tire wear contributed 2.8% of the total number concentration of particles with a size range of 0.80-4.00 μm. The aging particles from vehicle exhaust contributed the most (88.5%), with a peak at 0.25-0.65 μm. The sources of roadside particles were mainly related to vehicle activity, whereas temperature and relative humidity also affected the particle number size distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.