Abstract

Strain engineering is an effective method to tune the band gap and electronic transport properties of graphene nanoribbons (GNRs). However, strain/stress field may promote the system deviating from the equilibrium state, and the mechanical stability will become one of the key issues for reliable services of relevant devices. In this paper, the size-dependent mechanical properties of GNRs under tensile loading were studied by Molecular Dynamics (MD) simulations. The results indicate that the yield stress of both zigzag and armchair GNRs decreases with the ribbon length changing from 240 Å to 30 Å. However, the ductility of armchair GNRs was significantly improved. Radial Distribution Function (RDF) was employed to analyze the evolution of atomic configurations. It showed that lattice shearing is the main mechanism for the ductility of armchair GNRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call