Abstract
Thermal behavior of Pt10 and Pt1 bound to a silicon substrate prepared by the impact of size-selected Pt cluster ions at 1 eV per Pt atom was investigated. Their height and diameter were obtained by statistical analysis of their images using scanning-tunneling microscopy. The Pt10 are stably bound to the Si surface as monatomic-layered Pt10Si x disks with insertion of Si atoms into the clusters at the moment of the impact, and they start to be decomposed between 623 and 673 K under vacuum conditions. The thermal stability of the Pt10Si x disks is comparable to that of a Pt thin film prepared on a Si substrate, but inferior to that of Pt30 disks on the Si substrate. Comparing with thermal behavior of Pt atoms and a PtSi thin film on the Si substrate, it has been concluded that more Si atoms start to diffuse into a Pt10Si x disk between 623 and 673 K, while they do not into a Pt30 disk having a close-packed arrangement of the Pt atoms as high as 673 K, owing to a higher barrier for the Si insertion into the close-packed cluster disk than into the Pt10Si x disk having a longer Pt-Pt internuclear distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.