Abstract

The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.