Abstract
We demonstrated the formation of monodispersed spherical aluminum hydrous oxide precursors with tunable sizes by controlling the variables of a forced hydrolysis method. The particle sizes of aluminum hydrous oxide precursors were strongly dependent on the molar ratio of the Al(3+) reactants (sulfates and nitrates). In addition, the systematic phase and morphological evolutions from aluminum hydrous oxide to γ-alumina (Al(2)O(3)) and finally to α-Al(2)O(3) through thermal dehydrogenation were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). After annealing the amorphous aluminum hydrous oxide in air at 900 °C and 1100 °C for 1 h, we observed complete conversion to phase-pure γ- and α-Al(2)O(3), respectively, while maintaining monodispersity (125 nm, 195 nm, 320 nm, and 430 nm diameters were observed). Furthermore, both γ- and α-Al(2)O(3) were found to be mesoporous in structure, providing enhanced specific surface areas of 102 and 76 m(2) g(-1), respectively, based on the Brunauer-Emmett-Teller (BET) measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.