Abstract

The present work employed a molecular dynamics method to investigate the effect of NaCl concentration on the deformation, breakup, and evaporation characteristics of bio-nanodroplets under a strong electric field. It aims to reveal the size control mechanism for a nanoparticle produced by electrospray deposition. The results show that when the droplet dissolves NaCl, it is elongated to be a longer “spindle” by the electric field force, compared to the droplet without NaCl, and several small clusters are ejected from two tips of the spindle due to the hydration effect of Na+ and Cl−. In addition, the formation of ion pairs is observed when the droplet dissolves NaCl. The NaCl concentration affects the hydration degree and the formation of ion pairs significantly, which leads to different spindle lengths and number of clusters. The longer spindle and the larger cluster number could enlarge the free surface area and remarkably accelerate evaporation. Fabrication of smaller bio-nanoparticle requires both a faster evaporation rate and larger cluster number, which can be achieved by selecting an appropriate NaCl concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.