Abstract

Recently, an electron-spin filter was proposed by depositing two nanosized ferromagnetic metal stripe and Schottky normal metal stripe on the top of the semiconductor heterostructure [F. Zhai, H.Q. Xu, Y.Guo, Phys. Rev. B 70 (2004) 085308]. In this paper, we theoretically investigate the effect of device parameters on electron-spin polarization in the spin filter. It is shown that the electron-spin polarization is dependent greatly on the sizes and the position of the stripes. Thus, a quantum size effect exists in this device and the optimal spin polarization can be achieved by felicitously fabricating the stripes. It also is shown that the spin polarization can be altered by adjusting the electric-barrier height induced by an applied voltage to the Schottky metal stripe, which can result in a voltage-tunable electron-spin filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.