Abstract

This study employs molecular dynamics simulations using the embedded-atom method to investigate the structural and dynamic properties of supercooled liquid silver (Ag) metal under varying external hydrostatic pressures ranging from 0 to 70 GPa. The investigation spans various length scales, analyzing short-to-medium-range order, crystalline order, and fractal dimension to discern patterns that indicate how increased pressure affects atomic arrangements. The results suggest that increased external hydrostatic pressure triggers a shift to more ordered atomic structures characterized by relative atomic positions corresponding to the fcc lattice structure, highlighting the system's heightened sensitivity to pressure conditions. Furthermore, the study reveals pressure-dependent changes in atomic diffusion behavior and shows a reduction in atomic mobility with increasing pressure. In particular, the values of the diffusion coefficient decrease from 3.719 × 10−8 to 1.564 × 10−9 cm2 s−1 for 0 and 70 GPa, respectively, demonstrating the direct influence of pressure on the dynamics of supercooled liquid Ag metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.