Abstract
The size and structure of colloidal metal oxide (MgBaFeO) particles are determined using an Elliptically Polarized Light Scattering (EPLS) technique. The approach is based on a hybrid experimental/theoretical study where the experimental data are compared against predictions obtained using a T-Matrix model that accounts for particle shape irregularities. A power-law distribution function with two parameters is employed to account for the particle size distribution. The refractive index of the particles in ethyl alcohol is calculated based on the Maxwell-Garnet formula. The experiments are conducted using a second-generation nephelometer. It is shown that the current EPLS measurements can effectively be used for identification of both the shape and the size of the colloids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.