Abstract

Light scattering and turbidimetry techniques are classical tools for characterizing the dynamics and structure of single nanoparticles or nanostructured networks. They work by analyzing, as a function of time (Dynamic Light Scattering, DLS) or angles (Static Light Scattering, SLS), the light scattered by a sample, or measuring, as a function of the wavelength, the intensity scattered over the entire solid angle when the sample is illuminated with white light (Multi Wavelength Turbidimetry, MWT). Light scattering methods probe different length scales, in the ranges of (DLS), or (Wide Angle SLS), or (Low Angle SLS), and some of them can be operated in a time-resolved mode, with the possibility of characterizing not only stationary, but also aggregating, polymerizing, or self-assembling samples. Thus, the combined use of these techniques represents a powerful approach for studying systems characterized by very different length scales. In this work, we will review some typical applications of these methods, ranging from the field of colloidal fractal aggregation to the polymerization of biologic networks made of randomly entangled nanosized fibers. We will also discuss the opportunity of combining together different scattering techniques, emphasizing the advantages of a global analysis with respect to single-methods data processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.