Abstract
Complex systems often exhibit amazingly regular behavior through allometry relations (ARs) between their functional attributes and their size. An empirical allometry relation (EAR) between two properties of a complex system relates the average functionality [Formula: see text] and the average size [Formula: see text][Formula: see text] = a[Formula: see text] where the allometry coefficient a and allometry exponent b are empirical constants fit to data. This EAR is a static relation and is found in every sub-discipline of Natural History. Herein we establish, both empirically and theoretically, that for some classes of evolving technology systems, the empirical allometry coefficient a is not constant, but is strongly dependent on the historical time at which the technology system originated. Specifically, we construct an EAR with a time-dependent coefficient, using the evolution of a broad class of military systems, over the last ten centuries, ranging from a medieval bowman to a modern rifleman, from a horse-drawn cannon to a tank. This time-dependent EAR is derived from fundamental considerations involving complexity, scaling, and renormalization group theory. The theory entails an information as well as complexity generalization of the traditional allometry coefficient that combines system size with the technology knowledge of the new system’s developers (time-dependence). It relates technology ARs to technology evolution relations, such as Moore’s Law, with implications for technology drawn from biological evolution analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.