Abstract
The allometric relationship between the basal metabolic rate B and total body mass M is B = aMb, where the allometry coefficient a and the allometry exponent b have been fit to various data sets for over 150 years. The best fit of the allometry exponent to 391 mammalian species is given by Heusner [7] to be midway between the leading theoretical values of 2/3 and 3/4. Most theoretical investigations have focused on determining the proper value of b entailed by an appropriate biological model and with some notable exceptions ignored the allometry coefficient a altogether. Herein, we shift the focus and use the above data to settle on an empirical value of b that gives rise to an allometry coefficient with random variability described by a Pareto distribution. This new perspective suggests an interesting biological interpretation of the statistical fluctuations of the allometry coefficient. The time distribution of the intermittent fluctuations in a are determined to be of the same statistical form as those of speciation found in the punctuated equilibrium theory of macroevolution (Eldredge and Gould [3], Sneppen et al. [5] and Rikvold and Zia [17]).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.