Abstract
In this work, we demonstrate a fast approach to grow SiO2 nanowires by rapid thermal annealing (RTA). The material characteristics of SiO2 nanowires are investigated by field emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field (HAADF) imaging, electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM). The HAADF images show that the wire tip is predominantly composed of Pt with brighter contrast, while the elemental mappings in EFTEM and EELS spectra reveal that the wire consists of Si and O elements. The SiO2 nanowires are amorphous with featureless contrast in HRTEM images after RTA at 900°C. Furthermore, the nanowire length and diameter are found to be dependent on the initial Pt film thickness. It is suggested that a high SiO2 growth rate of >1 μm/min can be achieved by RTA, showing a promising way to enable large-area fabrication of nanowires.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.