Abstract

Single particle inductively coupled plasma mass spectrometry combined with the laser ablation technique (LA-spICP-MS) has been used for the determination of particle size and the spatial distribution of metal nanoparticles (MNPs) in various solid samples such as biological samples and semiconductor materials. In this study, we investigated the effect of the fluence of the laser being used on the disintegration of MNPs. Commercially available MNPs of silver and gold (Ag NPs and Au NPs), the sizes of which were determined by transmission electron microscopy (TEM), were analyzed with LA-spICP-MS. We evaluated the degree of disintegration of the original-sized particles, based on a comparison of the size distributions obtained by LA-spICP-MS and other analytical techniques. The disintegration of both the Ag NPs and Au NPs was induced by a laser ablation process when the laser fluence was higher than 1.0 J cm-2, whereas no disintegration was observed when the fluence was lower than 1.0 J cm-2. Moreover, the mean diameter and standard deviation of the determined diameters obtained by LA-spICP-MS were in good agreement with solution-based spICP-MS and TEM analysis within analytical uncertainty. The data obtained here demonstrates that LA-spICP-MS represents a promising potential analytical technique for accurately determining the size of individual MNPs and their spatial distribution in solid samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.