Abstract

Copper vanadates have been proposed as promising photoanodes for water-splitting photoelectrochemical cells, but their performance has recently been shown to be severely limited. To understand this behavior, we study the electronic structure and the optical properties of β-Cu2V2O7 both experimentally and computationally. The measured absorption spectrum shows an absorption peak at 1.5 eV followed by the onset of an apparent continuum at 2.26 eV, as generally found for this class of materials. We perform calculations within the framework of the QS GW̃ method and the Bethe-Salpeter equation while including effects of magnetic ordering, nuclear quantum motion, and thermal vibrations. We demonstrate the occurrence of two kinds of excitons with high binding energies upon optical excitation in β-Cu2V2O7, which account for the first absorption peak and the lower edge of the apparent continuum. The results are confirmed by photoluminescence measurements, where sub-band-gap emissions are found for both excitons. These results providean explanation for the low photocatalytic efficiencies of copper vanadates, despite the favorable size of their optical band gaps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call