Abstract
The aim of this study was to assess global left ventricular (LV) function and regional wall motion using retrospectively ECG-gated 16-slice computed tomography (CT) in comparison with magnetic resonance imaging (MRI). Twenty-one patients (18 male, 65.5+/-8.6 years) with acute myocardial infarction underwent multislice spiral CT (MSCT) and MRI. From manually drawn endo- and epicardial contours, LV volumes including myocardial mass, peak filling rate (PFR), peak ejection rate (PER), time to PER (TPER) and time from end-systole to PFR (TPFR) were calculated. Regional wall motion was assessed from cine loops using a 16-segment model of the left ventricle. LV function was analyzed using the Bland-Altman method, Pearson's correlation coefficient, multivariate analysis and post hoc t tests. Regional wall motion was evaluated with weighted kappa-statistics. Multivariate analysis revealed significant differences for global LV function as determined by MSCT and MRI. Post hoc t-tests showed significant differences for end-diastolic volume (EDV), PFR and TPER (P<0.05), while there was a good agreement for the LV volumes with an ejection fraction of 46.9+/-8.4% for MSCT and 46.9+/-8.9% for MRI. PER, PFR, TPER and TPFR presented a poor correlation and a wide range of scattering between MSCT and MRI. Regional wall motion scores showed a good agreement with kappa=0.791. Sixteen-slice spiral CT allows for reliable assessment of LV volumes, but is not yet suited for the evaluation of all functional parameters. Assessment of regional wall motion at rest is feasible.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have