Abstract
A six-band k⋅p model has been used to study the mobility of holes in Si inversion layers for different crystal orientations, for both compressive or tensile strain applied to the channel, and for a varying thickness of the Si layer. Scattering assisted by phonons and surface roughness has been accounted for, also comparing a full anisotropic model to an approximated isotropic treatment of the matrix elements. Satisfactory qualitative (and in several cases also quantitative) agreement is found between experimental data and theoretical results for the density and temperature dependence of the mobility for (001) surfaces, as well as for the dependence of the mobility on surface orientation [for the (011) and (111) surfaces]. Both compressive and tensile strain are found to enhance the mobility, while confinement effects result in a reduced hole mobility for a Si thickness ranging from 30 to 3 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.