Abstract

The effect of isotopic modification of diamond lattice on photoluminescence (PL) and optical absorption spectra of ensembles of SiV− centers was studied. Thin epitaxial diamond layers were grown by a microwave plasma CH4/H2 mixtures using methane enriched to 99.96% for either 12C or 13C isotopes, while the Si doping was performed by adding a small percentage of silane SiH4 into the plasma. Temperature dependent SiV− ZPL spectra in absorption were measured at 3–80 K to monitor the evolution of the ZPL fine structure. It is found that the SiV− ZPL at 736.9 nm observed in PL for 12C diamond at T = 5 K, exhibits a blue shift of 1.78 meV, to 736.1 nm in 13C diamond matrix. Narrow ZPL with the width (FWHM) of 0.09 meV (21 GHz) was measured in absorption spectra at T = 3–30 K in the Si‐doped 13C diamond. Besides the charged SiV− center, the absorption of the neutral SiV0 defect at 946 nm wavelength has also been detected. From changes observed in SiV− phonon band structure in PL with isotopic modification, the band at 64 meV was confirmed to be a local vibration mode (LVM) involving a Si atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.