Abstract
Evidently, criminal network activities have shown an increasing trend in terms of complexity and frequency, particularly with the advent of social media and modern telecommunication systems. In these circumstances, law enforcement agencies have to be armed with advance criminal network analysis (CNA) tools capable of uncovering with speed, probable key hidden relationships (links/edges) and players (nodes) in order to anticipate, undermine and cripple organised crime syndicates and activities. The development of link prediction models for network orientated domains is based on Social Network Analysis (SNA) methods and models. The key objective of this research is to develop a link prediction model that incorporates a fusion of metadata (i.e. environment data sources such as arrest warrants, judicial judgement, wiretap records and police station proximity) with a time-evolving criminal dataset in order to be aware of real-world situations to improve the quality of link prediction. Based on the review of related work, most of the models are constructed by leveraging on classical machine learning (ML) techniques such as support vector machine (SVM) without metadata fusion. The problem with the use of classical ML techniques is the lack of available domain dataset which is sufficiently large for training purpose. Compared to sociaI network, criminal network dataset by nature tends to relatively much smaller. In view of this, deep reinforcement learning (DRL) technique which could improve the training of models with the self-generated dataset is leveraged upon to construct the model. In this research, a purely time-evolving DRL model (TDRL-CNA) without metadata fusion is designed as a baseline for comparison with the metadata fusion model (FDRL-CNA). The experimental results show that the predictive accuracy of new and recurrent links by the FDRL-CNA model is higher than the baseline TDRL-CNA model that does not factor data fusion from different data sources.
Highlights
Syndicated criminal activities usually involve key leaders who coordinate their members in expanding their network to carry out their unlawful operations in a stealthy and coherent manner [1]
The predictive performance of both the proposed FDRL-criminal network analysis (CNA) and baseline TDRL-CNA link prediction models were both assessed using the area under curve (AUC) metric as it is unaffected by class imbalance
EXPERIMENT SET-UP For the purpose of training the classical and deep reinforcement learning (DRL)-CNA link prediction models, a multidimensional feature matrix is formulated from Social Network Analysis (SNA) metrics feature selection extracted from the criminal network dataset
Summary
Syndicated criminal activities usually involve key leaders (actors) who coordinate their members in expanding their network to carry out their unlawful operations in a stealthy and coherent manner [1]. Social Network Analysis (SNA) is a well-recognised technique applied on such criminal syndicates to uncover the key actors and relationships between them from the network topological configurations [2], [3]. SNA incorporates the knowledge from the field of graph theory, network analysis and social science [4] from which the development of SNA methodologies was pioneered. The SNA tools and techniques which incorporate graph theory, analytical methods and visualisation applications, are developed to perform the analysis of social networks and other domains which can be modelled in a network structure [5].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.