Abstract
Fluid leaking from arterial and venous extra-alveolar vessels (EAV's) may account for up to 60% of the total transvascular fluid flux when edema occurs in the setting of normal vascular permeability. We determined if the permeability and relative contribution of EAV's was altered after inducing acute lung injury in rabbits by administering oleic acid (0.1 ml/kg) into the pulmonary artery, HCl (5 ml/kg of 0.1 N) into the trachea, or air emboli (0.03 ml.kg-1.min-1) into the right atrium for 90 min. Subsequently, the lungs were excised and continuously weighed while they were maintained in a warmed, humidified chamber with alveolar and pulmonary vascular pressures controlled and the lungs either ventilated or distended with 5% CO2 in air. The vascular system was filled with autologous blood and saline (1:1) to which papaverine (0.1 mg/ml) was added to inhibit vasospasm. Vascular pressures were referenced to the lung base. After a transient hydrostatic stress to maximize recruitment, vascular pressures were set at 5 cmH2O, and lungs were allowed to become isogravimetric (30-60 min). A fluid filtration coefficient (Kf) was determined by the use of a modification of the method of Drake and colleagues [Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H266-H274, 1978]. EAV's were isolated by zoning techniques. In control preparations arterial and venous EAV's accounted for 26% (n = 9) and 38% (n = 11) of the total leakage, respectively. In all three models Kf increased two- to fourfold when the lungs were in zone 3 (alveolar vessels and arterial and venous EAV's contributing to the leakage).(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.