Abstract

In this article, the authors will support Managed Aquifer Recharge (MAR) as a tool to combat Climate Change (CC) adverse impacts on the basis of real sites, indicators, and specific cases located Spain. MAR has been used in Spain in combination with other measures of Integrated Water Resources Management (IWRM) to mitigate and adapt to Climate Change (CC) challenges. The main effects of CC are that the rising of the average atmospheric temperature together with the decreasing average annual precipitation rate cause extreme weather and induce sea level rise. These pattern results in a series of negative impacts reflected in an increase of certain events or parameters, such as evaporation, evapotranspiration, water demand, fire risk, run-off, floods, droughts, and saltwater intrusion; and a decrease of others such as availability of water resources, the wetland area, and the hydro-electrical power production. Solutions include underground storage, lowering the temperature, increasing soil humidity, reclaimed water infiltration, punctual and directed infiltration, self-purification and naturalization, off-river storage, wetland restoration and/or establishment, flow water distribution by gravity, power saving, eventual recharge of extreme flows, multi-annual management and positive barrier wells against saline water intrusion. The main advantages and disadvantages for each MAR solution have been addressed. As success must be measured, some indicators have been designed or adopted and calculated to quantify the actual effect of these solutions and their evolution. They have been expressed in the form of volumes, lengths, areas, percentages, grades, euros, CO2 emissions, and years. Therefore, MAR in Spain demonstrably supports its usefulness in battling CC adverse impacts in a broad variety of environments and circumstances. This situation is comparable to other countries where MAR improvements have also been assessed.

Highlights

  • In a world of arising concern for the effects of Climate Change (CC), the search for practical solutions to mitigate undesirable consequences implies a global change of mentality in the management of water resources

  • The main manifestations of CC shown in this paper on which the Managed Aquifer Recharge (MAR) techniques can incise are an increase in the average temperature, a decrease in the annual precipitation, recurrent extreme weather and a rise in the sea level [1]

  • Climate change effects and their associated impacts have been related to 10 successful MAR sites in Spain through a series of indicators (Figure 13), that let us assess the efficacy and efficiency of the MAR technique as a multifunctional technique that can simultaneously achieve several purposes

Read more

Summary

Introduction

In a world of arising concern for the effects of Climate Change (CC), the search for practical solutions to mitigate undesirable consequences implies a global change of mentality in the management of water resources. Beyond overexploitation of water bodies, it is mandatory to build models that take into account the current effects of CC, especially in those countries with arid or a semiarid climate, such as the Mediterranean area, where the annual rain scarcity overlaps with punctual extreme precipitations. These accepted phenomena are heightened according to the prevailing CC models. The key problems and impacts of CC whose figures are globally rising are the evaporation rate, water demand, fire risk, and run-off. On the other hand, decreasing figures are found, at least, in the water supply, wetland surface and hydro-electric energy production [2]

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call