Abstract
ABSTRACT The bile acids (BAs) de-conjugation is catalyzed by bile salt hydrolase (BSH) enzyme, that is an intestinal bacterial product and a member of the cholylglycine hydrolase (CGH) family. De-conjugated BAs alter BA-mediated signaling pathways such as glucose metabolism, energy homeostasis and lipid absorption and this makes the BSH clinically important. However, BSHs from different sources have a variable substrate preference to eight different bile salts. Although BSH is a well-studied enzyme, its molecular investigations based on BSH substrate recognition are not very well known. In this study, the relationship between substrate specificity of BSH from Lactobacillus plantarum B14 (LpBSH) and its loop II, the aliphatic-hydrophobic V58 and aromatic-hydrophobic Y65 residues in this loop was mutated and analyzed. While PCR-based site-directed mutagenesis was used to substitute V58 and Y65 amino acids for N58, F58, M58, C65, F65 and L65 amino acids, respectively, the BLR (DE3) strain of E. coli was used to express mutant recombinant LpBSHs (mrLpBSHs). Site-directed mutagenesis of LpBSH showed reduced activity of mrLpBSHs against six different BAs. Our results indicated that the V58 and mostly Y65 residues in loop II might be critical for the structural site that is involved in substrate specificity and catalysis. These findings suggested that V58 and Y65 residues of LpBSH might participate in substrate specificity and BSH substrate specificity may be dependent upon the collate group, rather than amino acid moieties. However, more mutagenesis-based investigation on other CGH family members are needed in order to understand the structure and substrate specificity relations of BSHs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.