Abstract

An aniline-based amino acid provides a powerful mechanistic probe for redox-active tyrosines, affording a general method for elucidating the sequence of proton and electron transfer events during side-chain oxidation in biological systems. Intein technology allows Y356 to be site-specifically replaced with p-aminophenylalanine (PheNH2) on the R2 subunit of the class I ribonucleotide reductase. Analysis of the pH rate profile of Y356PheNH2-R2 strongly suggests that the mechanism of long-distance intrasubunit radical transfer through position 356 proceeds with electron transfer prior to proton transfer. In addition, we propose that radical transfer through position 356 only becomes rate-limiting upon raising the reduction potential of the residue at that location and is not affected by protonation state of either the ground state or oxidized amino acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.