Abstract

The changes in supercoiling that accompany site-specific recombination have been measured. In each experiment, the substrate was a circle that contained two attachment sites oriented as an inverted repeat; recombination between the sites inverts one segment of the circle with respect to the other. Using conditions developed in the accompanying work, a measurable amount of the recombinant is in the form of unknotted, simple circles. The difference between the topological linking number of this product relative to that of the substrate can be determined directly from the change in mobility during agarose gel electrophoresis. With partially supercoiled substrates, both integrative and excisive recombination are characterized by a unique change in linking number, a relaxation of two topological turns. For excisive recombination, it has been possible to study closed circular substrates that lack supercoils. In this case, changes in linking number of both +2 and -2 are observed. These results are used to evaluate various proposals for synapsis and strand exchange in bacteriophage lambda site-specific recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.