Abstract

KplE1 is one of the 10 prophage regions of Escherichia coli K12, located at 2464 kb on the chromosome. KplE1 is defective for lysis, but it is fully competent for excisive recombination. In this study, we have mapped the binding sites of the recombination proteins, namely IntS, TorI, and IHF on attL and attR, and the organization of these sites suggests that the intasome is architecturally different from the lambda canonical form. We also measured the relative contribution of these proteins to both excisive and integrative recombination by using a quantitative in vitro assay. These experiments show a requirement of the TorI excisionase for excisive recombination and of the IntS integrase for both integration and excision. Moreover, we observed a strong influence of the supercoiled state of the substrates. The KplE1 recombination module, composed of the integrase and excisionase genes together with the attL and attR DNA regions, is highly similar to that of several phages infecting various E. coli strains as well as Shigella flexneri and Shigella sonnei. The in vitro recombination data reveal that HK620 and KplE1 att sequences are exchangeable. This study thus defines a new site-specific recombination module, and implications for the mechanism and regulation of recombination are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.