Abstract

We demonstrate gate operations on a single qubit at a specific site without perturbing the coherence of an adjacent qubit in a 1D optical lattice when the site separation is only 532nm. Three types of spin rotations are performed on the target qubit with fidelities between 0.88±0.05 and 0.99±0.01, whereas the superposition state of the adjacent one is preserved with fidelities between 0.93±0.04 and 0.97±0.04. The qubit is realized by a pair of Zeeman-sensitive ground hyperfine states of a ^{7}Li atom, and each site is identified by its resonance frequency in a magnetic field gradient of 1.6 G/cm. We achieve the site-specific resolving power in the frequency domain by using magic polarization for the lattice beam that allows a Fourier-limited transition linewidth as well as by highly stabilizing the lattice parameters and the ambient conditions. We also discuss a two-atom entanglement scheme using a blockade by cold collisional shifts in a 1D superlattice, for which a coherent manipulation of individual qubits is a prerequisite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call