Abstract

Synergistic doping of the metastable Gd3Al5O12:Ce garnet with a Ca2+/Hf4+ pair and Sc3+ to form Gd2.97-xCaxHfxScyAl3O12:0.03Ce (x = 0.5-2.0, y = 0.0-1.5, x + y = 2.0) solid solution was conducted for the structural stabilization and photoluminescence manipulation. The site selection of Ca2+/Hf4+/Sc3+ dopants and the effects of doping on the crystal structure, local coordination, band structure and Ce3+ luminescence were revealed in detail with the results of XRD, Rietveld refinement, TEM, and UV-Vis/photoluminescence spectroscopy. A decrease in Ca2+/Hf4+ and an increase in the Sc3+ content were observed to shrink the lattice, widen the bandgap of the garnet host, red-shift the excitation/emission wavelength, broaden the emission band and shorten the fluorescence lifetime of Ce3+. The spectral changes were rationalized by considering the local coordination and crystal field splitting of the Ce3+ 5d energy level. Application of typical Gd0.97Ca2Hf2Al3O12:0.03Ce (x = 2.0, y = 0) cyan and Gd2.47Ca0.5Hf0.5Sc1.5Al3O12:0.03Ce (x = 0.5, y = 1.5) greenish-yellow phosphors in w-WLED lighting produced low correlated color temperatures of ∼3842 and 3514 K, high color rendering indices of ∼88 and 93 and favorable luminous efficacies of ∼32.9 and 14.7 lm/W under the excitation of 395 nm n-UV and 450 nm blue LED chips, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.