Abstract

The effects exerted by new bioactive acylpyrazolonate Ag(I) derivatives of the general formula [Ag(QPy,CF3)(R-Im)] containing different substituents on the imidazole (R-Im) ancillary ligands and the natural plasticizer castor oil when both are added to the ethylcellulose (EC) biopolymer in the preparation of thin films as potential active food packaging materials are presented. The Ag(I) complexes [Ag(QPy,CF3)(Bn-Im)] and [Ag(QPy,CF3)(Bu-Im)], having benzyl and butyl substituents, whose single crystal molecular structures are reported, have proved to be highly compatible for efficient incorporation between the EC polymer and the hydrophobic plasticizer chains, giving rise, even at low concentrations, to homogeneous, robust and elastic films. The concomitant presence of these Ag(I) complexes and castor oil in the polymer EC matrix gives rise to thin films with improved antibacterial activity against Escherichia coli (E. coli) as a model of Gram-negative bacterial strains when compared to the non-plasticized ones, with very low Ag(I) migration in the three food simulants used (distilled water, ethanol 10% v/v and acetic acid 3% v/v) under two assay conditions (70 °C for 2 h and 40 °C for 10 days).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.