Abstract

Gamma (γ) alumina is referred to as a defect spinel because it has a tetragonally distorted spinel structure (AB2O4) and an insufficient number of cations to fill all cation sites. In the spinel structure, the oxygen lattice is cubic close packed with A- and B-site cations in tetrahedral and octahedral coordination, respectively. The 2l⅓ Al atoms per unit cell of γ alumina can distribute themselves across 16 octahedral and 8 tetrahedral sites.The literature differs on where the 2⅔ cation vacancies per unit cell are located. Wilson and McConnell proposed that the vacancies in γ alumina, as first formed by calcining boehmite, are predominantly on the tetrahedral lattice but, with further heat treatment, move to occupy random positions on both octahedral and tetrahedral lattices. One study using NMR showed that the vacancies lay exclusively on the tetrahedral lattice, independent of the calcination temperature. A more-recent study using Rietveld refinement of powder neutron diffraction data suggested that both octahedral and tetrahedral lattices were partially occupied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.