Abstract

An engineering approach is proposed for representing both site effects and soil-structure interaction in extended alluvial valleys, by using the one-dimensional model of shear were propagation corrected empirically to account for lateral heterogeneities and generated surface waves. The peak structural response is expressed by means of spectral contours that are a function of the predominant period of the site and the fundamental period of the structure. Variations of the peak spectral ordinates with the prevailing site period can be deduced from these contours. A number of events of firm ground, representative of the most dangerous earthquakes expected in Mexico City, are assumed as design earthquakes. Making use of the resulting spectral contours, the provisions for site effects recommended in the Mexican seismic code are evaluated. Also, considering as control motion the 1985 Michoacan earthquake recorded at a representative firm site, spectral contours with soil-structure interaction are obtained which allow one to identify the significant interaction effects originating in the Valley of Mexico for medium- and long-period structures. The influence and relative importance of the critical parameters involved are examined within practical ranges of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.