Abstract

Earlier studies have established the importance of five disulfide bridges (DBs) in Aspergillus niger phytase. In this study, the relative importance of each of the individual disulfide bridge is determined by its removal by site-directed mutagenesis of specific cysteines in the cloned A. niger phyA gene. Individually, these mutant phytases were expressed in a Pichia expression system and their product purified and characterized. The removal of disulfide bridge 2 yielded a mutant phytase with a complete loss of catalytic activity. The other disulfide mutants displayed a broad array of altered catalytic properties including a lower optimum temperature from 58 degrees C to 53 degrees C for bridge number 1, 37 degrees C for bridge number 3 and 4, and 42 degrees C for bridge number 5. The pH versus activity profile was also modified in the DB mutants. The pH profile of the wild-type phytase was modified by the DB mutations. In bridge number 1, 3, and 4, the second peak at pH 2.5 was abolished, and in bridge number 5, the peak at pH 5.0 was abolished completely leaving only the pH 2.5. While the K (m) was not affected drastically, the turnover number was lowered significantly in bridge number 3, 4, and 5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.