Abstract

Plant defensins are small cysteine-rich proteins that present high activity against fungi and bacteria and inhibition of insect proteases and α-amylases. Here, we present the expression in Pichia pastoris, purification and characterization of the recombinant Pisum sativum defensin 1(r Psd1); a pea defensin which presents four disulfide bridges and high antifungal activity. For this, we had to overcome the inefficiency of the STE13 protease. Our strategy was to clone the corresponding cDNA directly in-frame with a variant of the widely used secretion signal from the Saccharomyces cerevisiae α-mating factor, devoid of the STE13 proteolytic signal cleavage sequence. Using an optimized expression protocol, which included a buffered basal salt media formulation, it was possible to obtain about 63.0 mg/L of 15N-labeled and unlabeled rPsd1. The recombinants were purified to homogeneity by gel filtration chromatography, followed by reversed-phase HPLC. Mass spectrometry of native and recombinant Psd1 revealed that the protein expressed heterologously was post-translationally processed to the same mature protein as the native one. Circular dichroism and nuclear magnetic resonance spectroscopy analysis indicated that the recombinant protein had the same folding when compared to native Psd1. In addition, the rPsd1 was fully active against Aspergillus niger, if compared with native Psd1. To our knowledge, this is the first heterologous expression of a fully active plant defensin in a high-yield flask.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.