Abstract

Modulation of protein-protein interactions (PPIs) by small molecules has emerged as a valuable approach in drug discovery. Compared to direct inhibition, PPI stabilization is vastly underexplored but has strong advantages, including the ability to gain selectivity by targeting an interface formed only upon association of proteins. Here, we present the application of a site-directed screening technique based on disulfide trapping (tethering) to select for fragments that enhance the affinity between protein partners. We target the phosphorylation-dependent interaction between the hub protein 14-3-3σ and a peptide derived from Estrogen Receptor α (ERα), an important breast cancer target that is negatively regulated by 14-3-3σ. We identify orthosteric stabilizers that increase 14-3-3/ERα affinity up to 40-fold and propose the mechanism of stabilization based on X-ray crystal structures. These fragments already display partial selectivity toward ERα-like motifs over other representative 14-3-3 clients. This first of its kind study illustrates the potential of the tethering approach to overcome the hurdles in systematic PPI stabilizer discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.