Abstract
High-speed visible light communication (VLC) using light-emitting diodes (LEDs) is a potential complementary technology for beyond-5G wireless communication networks. The speed of VLC systems significantly depends on the quality of LEDs, and thus various novel LEDs with enhanced VLC performance increasingly emerge. Among them, InGaN/GaN-based LEDs on a Si-substrate are a promising LED transmitter that has enabled VLC data rates beyond 10 Gbps. The optimization on the period number of superlattice interlayer (SL), which is a stress-relief epitaxial layer in a Si-substrate LED, has been demonstrated to be an effective method to improve Si-substrate LED’s luminescence properties. However, this method to improve LED’s VLC properties is barely investigated. Hence, we for the first time experimentally studied the impact of SL period number on VLC performance. Accordingly, we designed and fabricated an integrated 4 × 4 multichromatic Si-substrate wavelength-division-multiplexing LED array chip with optimal SL period number. This chip allows up to 24.25 Gbps/1.2 m VLC transmission using eight wavelengths, which is the highest VLC data rate for an InGaN/GaN LED-based VLC system to the best of our knowledge. Additionally, a record-breaking data rate of 2.02 Gbps over a 20-m VLC link is achieved using a blue Si-substrate LED with the optimal SL period number. These results validate the effectiveness of Si-substrate LEDs for both high-speed and long-distance VLC and pave the way for Si-substrate LED design specially for high-speed VLC applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.