Abstract

An in vitro sister-chromatid exchange (SCE) assay using mouse primary bone marrow and spleen cells was conducted with both direct- and indirect-acting genotoxic agents. 2,4,7-Trinitrofluorenone, a direct-acting genotoxic agent, induced a significant dose-related increase in SCEs. In both bone marrow and spleen cells, 2.0 μg/ml caused an approx. 3-fold increase in SCE level over control values. Cyclophosphamide, an indirect-acting genotoxicant which requires metabolic activation for its clastogenicity, induced a significant increase in SCEs in the presence of S9 from liver of rats pretreated with Aroclor-1254. A dose of 2 μg/ml resulted in a 2-fold increase in bone marrow and a greater than 5-fold increase in spleen cells. Benzo[ a]pyrene, another indirect-acting genotoxicant, also induced significant dose-related SCE responses in both cell types. It seems that primary bone marrow and spleen cell culture systems can detect both direct- and indirect-acting genotoxicants and may be useful for routine and/or comparative cytogenetic studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.