Abstract
One of the algorithm for aerial image stitching system is SURF (Speeded Up Robust Features). It is a robust algorithm which is invariant to image scale, rotation, blurring, illumination, and affine transformation. Although SURF has good performance, some of the detected keypoints are not always considered as necessary keypoints . As a result, these unnecessary keypoints are needed to be eliminated to decrease computation time.The proposed system uses SURF detector in the detection process. The data reduction method will eliminate couple of keypoints which have near distance each other. Next, the keypoints will be described by SURF descriptor.The description Results further matched using FLANN. The next step is the search pattern with RANSAC homography matrix and stitch the picture to accumulate keypoints using warpPerpective.Stitching system are tested with some variations, such as scale variations, rotation variations, and overlap variations on the image. Based on the result, the proposed Data Reduction method has optimum value of minimal radius from 40 pixels to 100 pixels. The stitching process is still working with up to 90% keypoint number reduction. Average computation time using data reduction method are 39,41% faster than without data reduction method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.