Abstract

A quadcopter has a very nonlinear system characteristic that is influenced by unexpected disturbances such as the influence of wind that reflected off the ground when taking off or landing. Therefore, a robust control strategy is needed to improve the quadcopter performance. In this study, the control strategy is used to resolve outdoor automatic landing problems in a stable manner using the Sliding Mode Control (SMC) algorithm. The quadcopter has six degrees of freedom (6-DoF) with only four independent inputs, this makes it impossible to control 6-DoF directly and simultaneously. To handle this, the proposed structure is a multilevel control structure, inner loop dan outer loop controller. The Inner loop controls the rotational dynamics subsystem (3-DoF), while the outer loop controls the translational dynamics subsystem (3-DoF) which is designed in conjunction with the generation of attitude angle set-point. With the concept of automatics landing can reduce the risk of accidents on a quadcopter. The SMC technique on an automatics quadcopter landing shows the results with an error in roll of ± 0.05 radians, pitch ± 0.03 radians, yaw less than 0.3 radians, and translational movements the z-axis is ± 0.2 meters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.