Abstract
This work presents a Robust Stochastic Model Predictive Control (RSMPC) framework for real-time motion planning autonomous vehicles, addressing the complex multi-modal vehicle interactions. The proposed framework involves adding expert policy from observations to the dataset and applying the Data Aggregation (DAgger) method to filter unsafe demonstrations and resolve expert conflicts. A Dual-Stage Attention-based Recurrent Neural Network (DA-RNN) model is integrated to predict dual class variables from the dataset, producing a set containing constraints collision-avoidance predicted to be active. The RSMPC framework enhances formulation optimization by eliminating irrelevant collision avoidance constraints, resulting in faster control signals. The framework is applied iteratively, continuously updating observations and solving the RSMPC optimization formulation in real-time. Evaluation of the DA-RNN model achieved a recall value of 0.97 and a high accuracy rate of 98.1% in predicting dual interactions, with a minimal false negative rate of 0.026, highlighting its effectiveness in capturing interaction intricacies. Validated through simulations of interactive traffic intersections, the proposed framework demonstrably excels, showing high feasibility of 99.84% and a 15-fold increase in response speed compared to the baseline. This approach ensures autonomous vehicles navigate safely and efficiently in complex traffic scenarios, paving the way for more reliable and scalable autonomous driving solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.