Abstract
Renewable resourced polymer composites from vegetable oils and bio-fibers are receiving increasing attention from various industries due to their characteristics of being less heavy, environment friendly, and biodegradable. Lignocellulosic natural fibers have immense potential to be used as reinforcing fillers due to their characteristics of being less expensive, abundant obtainability, lower density, higher specific strength and modulus, and good interfacial strength with thermoset polymers. In this chapter, epoxidized nonedible linseed and castor oils are proposed as a diluent to petro-based epoxy in formulating toughened bio-based copolymers. Unidirectional sisal fibers were reinforced within a network of such bio-epoxy copolymers in order to achieve an optimal stiffness–toughness balance. Cardanol based phenalkamine, a bio-renewable crosslinker, is used to develop well toughened sustainable and green composite materials. The composites were subjected to various thermal, mechanical, dynamic mechanical, and morphological tests to investigate the impact of nonedible epoxidized oils and sisal fibers in addition to the petro-based epoxy matrix. The present study shows the method for design and development of novel sustainable green composites with higher bio-source content (>65%) meant for shock absorbing applications. These green materials may find good space in making high-performance engineering applications in automotive, structural, construction, and building sectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.