Abstract

Adaptation under fasting conditions is critical for survival in animals. Sirtuin 1 (SIRT1), a protein deacetylase, plays an essential role in adaptive metabolic and endocrine responses under fasting conditions by modifying the acetylation status of various proteins. Fasting induces growth hormone (GH) resistance in the liver, leading to decreased serum insulin-like growth factor-I (IGF-I) levels as an endocrine adaptation for malnutrition; however, the underlying mechanisms of this action remain to be fully elucidated. Here we report that in vivo knockdown of SIRT1 in the liver restored the fasting-induced decrease in serum IGF-I levels and enhanced the GH-dependent increase in IGF-I levels, indicating that SIRT1 negatively regulates GH-dependent IGF-I production in the liver. In vitro analysis using hepatocytes demonstrated that SIRT1 suppresses GH-dependent IGF-I expression, accompanied by decreased tyrosine phosphorylation on signal transducer and activator of transcription (STAT) 5. GST pull-down assays revealed that SIRT1 interacts directly with STAT5. When the lysine residues adjacent to the SH2 domain of STAT5 were mutated, STAT5 acetylation decreased concomitant with a decrease in its transcriptional activity. Knockdown of SIRT1 enhanced the acetylation and GH-induced tyrosine phosphorylation of STAT5, as well as the GH-induced interaction of the GH receptor with STAT5. These data indicate that SIRT1 negatively regulates GH-induced STAT5 phosphorylation and IGF-I production via deacetylation of STAT5 in the liver. In addition, our findings explain the underlying mechanisms of GH resistance under fasting conditions, which is a known element of endocrine adaptation during fasting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call