Abstract

The formation of myelin by Schwann cells (SCs) occurs via a series of orchestrated molecular events. We previously used global expression profiling to examine peripheral nerve myelination and identified the NAD(+)-dependent deacetylase Sir-two-homolog 2 (Sirt2) as a protein likely to be involved in myelination. Here, we show that Sirt2 expression in SCs is correlated with that of structural myelin components during both developmental myelination and remyelination after nerve injury. Transgenic mice lacking or overexpressing Sirt2 specifically in SCs show delays in myelin formation. In SCs, we found that Sirt2 deacetylates Par-3, a master regulator of cell polarity. The deacetylation of Par-3 by Sirt2 decreases the activity of the polarity complex signaling component aPKC, thereby regulating myelin formation. These results demonstrate that Sirt2 controls an essential polarity pathway in SCs during myelin assembly and provide insights into the association between intracellular metabolism and SC plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.