Abstract

The molecular mechanisms that regulate Schwann cell (SC) plasticity and the role of the Nrg1/ErbB-induced MEK1/ERK1/2 signalling pathway in SC dedifferentiation or in myelination remain unclear. It is currently believed that different levels of MEK1/ERK1/2 activation define the state of SC differentiation. Thus, the identification of new regulators of MEK1/ERK1/2 signalling could help to decipher the context-specific aspects driving the effects of this pathway on SC plasticity. In this perspective, we have investigated the potential role of KIAA1199, a protein that promotes ErbB and MEK1/ERK1/2 signalling in cancer cells, in SC plasticity. We depleted KIAA1199 in the SC-derived MSC80 cell line with RNA-interference-based strategy and also generated Tamoxifen-inducible and conditional mouse models in which KIAA1199 is inactivated through homologous recombination, using the Cre-lox technology. We show that the invalidation of KIAA1199 in SC decreases the expression of cJun and other negative regulators of myelination and elevates Krox20, driving them towards a pro-myelinating phenotype. We further show that in dedifferentiation conditions, SC invalidated for KIAA1199 exhibit lower myelin clearance as well as increased myelination capacity. Finally, the Nrg1-induced activation of the MEK/ERK/1/2 pathway is severely reduced when KIAA1199 is absent, indicating that KIAA1199 promotes Nrg1-dependent MEK1 and ERK1/2 activation in SCs. In conclusion, this work identifies KIAA1199 as a novel regulator of MEK/ERK-induced SC dedifferentiation and contributes to a better understanding of the molecular control of SC dedifferentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.