Abstract

The Susceptible-Infected-Recovered (SIR) model is the cornerstone of epidemiological models. However, this specification depends on two parameters only, which implies a lack of flexibility and the difficulty to replicate the volatile reproduction numbers observed in practice. We extend the classic SIR model by introducing nonlinear stochastic transmission, to get a stochastic SIR model. We derive its exact solution and discuss the condition for herd immunity. The stochastic SIR model corresponds to a population of infinite size. When the population size is finite, there is also sampling uncertainty. We propose a state-space framework under which we analyze the relative magnitudes of the observational and stochastic epidemiological uncertainties during the evolution of the epidemic. We also emphasize the lack of robustness of the notion of herd immunity when the SIR model is time discretized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.